Shape-aware surface reconstruction from sparse 3D point-clouds

نویسندگان

  • Florian Bernard
  • Luis Salamanca
  • Johan Thunberg
  • Alexander Tack
  • Dennis Jentsch
  • Hans Lamecker
  • Stefan Zachow
  • Frank Hertel
  • Jorge M. Gonçalves
  • Peter Gemmar
چکیده

The reconstruction of an object's shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are "oriented" according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest) during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for su...

متن کامل

Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV

In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...

متن کامل

Morfit: Interactive Surface Reconstruction from Incomplete Point Clouds ith Curve-Driven Topology and Geometry Control

With significant data missing in a point scan, reconstructing a complete surface with sufficient geometric and topological fidelity is highly challenging. We present an interactive technique for surface reconstruction from incomplete and sparse scans of 3D objects possessing sharp features. A fundamental premise of our interaction paradigm is that directly editing data in 3D is not only counter...

متن کامل

Implicit Scene Modelling from Imprecise Point Clouds

In applying optical methods for automated 3D indoor modelling, the 3D reconstruction of objects and surfaces is very sensitive to both lighting conditions and the observed surface properties, which ultimately compromise the utility of the acquired 3D point clouds. This paper presents a robust scene reconstruction method which is predicated upon the observation that most objects contain only a s...

متن کامل

Multi-View Stereo Point Clouds Visualization

3D reconstruction from image sequences using multi-view stereo (MVS) algorithms is an important research area in computer vision and has multitude of applications. Due to its image-feature-based analysis, 3D point clouds derived from such algorithms are irregularly distributed and can be sparse at plain surface areas. Noise and outliers also degrade the resulting 3D clouds. Recovering an accura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2017